
Supplementary Information
Interference between multipolar two-photon transitions in quantum emitters near

plasmonic nanostructures

S. Smeets,∗ B. Maes,† and G. Rosolen‡

Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering,
University of Mons, 20 Place du Parc, Mons B-7000, Belgium

∗ Steve.Smeets@umons.ac.be
† Bjorn.Maes@umons.ac.be
‡ Gilles.Rosolen@umons.ac.be

mailto:Steve.Smeets@umons.ac.be
mailto:Bjorn.Maes@umons.ac.be
mailto:Gilles.Rosolen@umons.ac.be


1

I. CONTRIBUTION OF MULTIPOLAR EMISSION CHANNELS AND INTERFERENCE EFFECTS TO
THE TPSE PROCESS

In this section we present the derivation of the multipolar decay channels and of the interference terms for the
two-photon spontaneous emission (TPSE) process. We begin with a reminder of the second-order Fermi’s golden rule
used to calculate transition rates via a perturbative approach and of the Hamiltonian that describes the interaction
between the emitter and the electromagnetic field. Then, we derive the expression of the total TPSE rate as well as
the contribution to this rate of the two-electric dipole (2ED), the two-electric quadrupole (2EQ) transitions and the
interference term between these two multipolar decay channels. Next, the interference term is expressed as a function
of the dyadic Green’s function and the link with the Purcell factors of the one-photon spontaneous emission process
is established. The 2ED and 2EQ transition rates were previously derived in Ref. [1], as well as their link to the
one-photon Purcell factors.

A. Fermi’s golden rule

The probability per unit time that a system carries out a second-order transition by emitting two quanta from an
initial state |i⟩ to a final state |f⟩, upon an interaction described by the Hamiltonian Hint, is given by Fermi’s golden
rule [2, 3]

Γ
(2)
i→f =

2π

ℏ
|M (2)

fi |2δ(Ef − Ei), (I.1)

with the second-order matrix element

M
(2)
fi =

∑
l

⟨f |Hint |l⟩ ⟨l|Hint |i⟩
Ei − El

, (I.2)

where the summation runs over all possible virtual intermediate states |l⟩ of the system. In these equations, ℏ is the
reduced Planck constant, Ea stands for the energy of the system in the state |a⟩ with a = i, l, f , and the superscript
(2) indicates that this is a second-order transition, in contrast with first-order transitions. Furthermore, as depicted in
Figure I.1, this second-order transition can be seen as two successive transitions in which each one emits a quantum.

Regarding the states in this second-order process [2], the initial one is characterized by the emitter in an excited
state |e⟩ and the field in the vacuum state |vac⟩, while in the final one the emitter is in a lower energy state |g⟩ and
the field is in a two-quanta state |1α, 1α′⟩ where α and α′ stand for the modes of the two emitted quanta. Thus, they
are respectively written as

|i⟩ = |e; vac⟩ (I.3a)
and as |f⟩ = |g; 1α, 1α′⟩ . (I.3b)

In the intermediate states that connect these two states, the emitter is in an intermediate energy state |m⟩ and the
field is in a one-quantum state. Depending on in which mode is the emitted quantum, the intermediate states are
written as

|l⟩ = |m; 1α⟩ (I.4a)
or as |l⟩ = |m; 1α′⟩ . (I.4b)

Further on, the energy of the emitter in the state |a⟩ will be denoted as εa with a = e,m, g.

B. Interaction Hamiltonian

Consider the interaction Hamiltonian, as presented in the main text, involving the electric dipole plus the electric
quadrupole interactions. The electric field operator present in its expression can be written as a function of the normal
modes Aα(r) of the vector potential [4, 5]:

E(r, t) = i
∑
α

√
ℏωα

2ε0

{
aα(t)Aα(r)− a†α(t)A

∗
α(r)

}
. (I.5)

In these equations, ε0 is the vacuum electric permittivity, whereas aα(t) and a†α(t) are the annihilation and creation
operators of a photon in the mode α of energy ℏωα. Note that the modes Aα(r) are normalized and form a complete
set of solutions of the Helmholtz equation, subject to the boundary conditions imposed by the photonic environment.
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FIG. I.1. Energy and time representations of a second-order transition. The emitter carries-out a first transition from its excited
state |e⟩ to a virtual intermediate state |m⟩ by emitting a photon in the mode α. Then, a second transition is carried out to
the ground state |g⟩ of lower energy by emitting a photon in the mode α′. The transition energy is given by ℏωeg := εe − εg.
These representations only consider the intermediate state of the system |l⟩ = |m; 1α⟩ where the first photon is emitted in the
mode α, but similar representations can be sketched by inverting the role of the two emitted quanta.

C. Derivation of the total TPSE rate

Now that Fermi’s golden rule and all the states involved in the second-order transition and the interaction Hamil-
tonian have been introduced, let us derive the total TPSE rate, which includes the contributions of the 2ED and
2EQ transitions and of the term describing the interference between these two channels. Given that the initial and
the final energies of the system are, respectively, Ei = εe and Ef = εg + ℏωα + ℏωα′ , the Dirac delta distribution in
Fermi’s golden rule in equation (I.1) can be rewritten as

δ(Ef − Ei) =
1

ℏ
δ(ωeg − ωα − ωα′), (I.6)

where we define ℏωab := εa − εb with a, b = e,m, g.
Then, given that there are two kinds of intermediate states [Eqs. (I.4)], the summation over them in the expression

of the second-order matrix element M
(2)
fi is split in two:

M
(2)
fi =

∑
|m⟩

⟨1α, 1α′ | ⟨g|Hint |m⟩ |1α⟩ ⟨1α| ⟨m|Hint |e⟩ |vac⟩
ℏ (ωem − ωα)

+
∑
|m⟩

⟨1α, 1α′ | ⟨g|Hint |m⟩ |1α′⟩ ⟨1α′ | ⟨m|Hint |e⟩ |vac⟩
ℏ (ωem − ωα′)

, (I.7)

where the first summation corresponds to the representations sketched in Figure I.1.
Let us first calculate the factor ⟨1α, 1α′ | ⟨g|Hint |m⟩ |1α⟩ with the interaction Hamiltonian given in the main text

and with the electric field operator given in the equation (I.5). As we are interested in emission processes, only the
part of E involving creation operators, noted as E(−), is kept in the calculation:

⟨1α, 1α′ | ⟨g|Hint |m⟩ |1α⟩ = ⟨1α, 1α′ | ⟨g| − d ·E(R)−Q : [∇E(R)] |m⟩ |1α⟩ (I.8a)

= −⟨g|d |m⟩ · ⟨1α, 1α′ |E(−)(R) |1α⟩ − ⟨g|Q |m⟩ :
[
∇⟨1α, 1α′ |E(−)(R) |1α⟩

]
(I.8b)

= −dgm · ⟨1α, 1α′ | − i
∑
β

√
ℏωβ

2ε0
a†βA

∗
β(R) |1α⟩

−Qgm :

∇⟨1α, 1α′ | − i
∑
β

√
ℏωβ

2ε0
a†βA

∗
β(R) |1α⟩

 , (I.8c)

where dab := ⟨a|d|b⟩ and Qab := ⟨a|Q|b⟩ stand, respectively, for the transition electric dipole and quadrupole moments
(i.e., the first-order matrix element of the operators d and Q) that describe the emitter’s transition from the state |b⟩
to the state |a⟩ (a, b = e, m, g). In the previous equation, only the term involving the creation operator that creates



3

a photon in the mode β = α′ leads to a non-zero term because the field states form an orthonormal basis1. Thus, we
get

⟨1α, 1α′ | ⟨g|Hint |m⟩ |1α⟩ = i

√
ℏωα′

2ε0
{dgm ·A∗

α′(R) +Qgm : [∇A∗
α′(R)]} ⟨1α, 1α′ | a†α′ |1α⟩︸ ︷︷ ︸

⟨1α,1α′ |1α,1α′ ⟩=1

(I.9a)

= i

√
ℏωα′

2ε0
{dgm ·A∗

α′(R) +Qgm : [∇A∗
α′(R)]} . (I.9b)

Similar developments for the second factor in the first summation of equation (I.7) lead to

⟨1α| ⟨m|Hint |e⟩ |vac⟩ = i

√
ℏωα

2ε0
{dme ·A∗

α(R) +Qme : [∇A∗
α(R)]} . (I.10)

Therefore, the first summation in the equation (I.7) is rewritten as

−
√
ωαωα′

2ε0

∑
|m⟩

(dgm ·A∗
α′(R) +Qgm : [∇A∗

α′(R)]) (dme ·A∗
α(R) +Qme : [∇A∗

α(R)])

ωem − ωα
. (I.11)

Concerning the second summation presents in the equation (I.7), the result can be obtained by inverting the role
of α and α′ in the last obtained equation. Thus, the second-order matrix element M

(2)
fi is rewritten as

M
(2)
fi = −

√
ωαωα′

2ε0

∑
|m⟩

{
dgm ·A∗

α′ dme ·A∗
α

ωem − ωα
+

dgm ·A∗
α dme ·A∗

α′

ωem − ωα′

+
Qgm : [∇A∗

α′ ] Qme : [∇A∗
α]

ωem − ωα
+

Qgm : [∇A∗
α] Q

me : [∇A∗
α′ ]

ωem − ωα′

+
Qgm : [∇A∗

α′ ] dme ·A∗
α

ωem − ωα
+

Qgm : [∇A∗
α] d

me ·A∗
α′

ωem − ωα′

+
dgm ·A∗

α′ Qme : [∇A∗
α]

ωem − ωα
+

dgm ·A∗
α Qme : [∇A∗

α′ ]

ωem − ωα′

}
, (I.12)

where the spatial dependency has been omitted. This quantity can be split into four contributions:

M
(2)
fi = M2ED

fi +M2EQ
fi +MED−EQ

fi +MEQ−ED
fi , (I.13)

where the first one corresponds to the first two terms in the summation over |m⟩ in the equation (I.12), the second to
the next two, and so on. The contributions M2ED

fi and M2EQ
fi are, respectively, obtained when only the electric dipole

or the electric quadrupole interaction is taken into account. Thus, by considering these contributions separately, we
find the formulas derived for the 2ED and 2EQ transitions [1]. When both electric dipole and quadrupole interactions
are present in the interaction Hamiltonian, these first two contributions appear simultaneously as well as two new
contributions MED−EQ

fi and MED−EQ
fi describing mixed transitions. In the following, the contribution of mixed

transitions to the second-order matrix element is discarded, because they are not involved in the second-order transition
studied in the application in the main text, i.e., between two states of an hydrogen atom that have the same azimuthal
quantum numbers [6, 7].

1 An orthonormal basis satisfies ⟨1α|1β⟩ = δαβ and ⟨1α, 1α′ |1β , 1β′ ⟩ = ⟨1α|1β⟩ ⟨1α′ |1β′ ⟩ = δαβ δα′β′ .
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Using the commutation property of the scalar and double dot products, one obtains

M
(2)
fi = M2ED

fi +M2EQ
fi = −

√
ωαωα′

2ε0

∑
|m⟩

{
A∗

α ·dme dgm ·A∗
α′

ωem − ωα
+

A∗
α ·dgm dme ·A∗

α′

ωem − ωα′

+
[∇A∗

α] : Q
me Qgm : [∇A∗

α′ ]

ωem − ωα
+

[∇A∗
α] : Q

gm Qme : [∇A∗
α′ ]

ωem − ωα′

}
(I.14a)

= −
√
ωαωα′

2ε0

A∗
α ·

∑
|m⟩

{
dmedgm

ωem − ωα
+

dgmdme

ωem − ωα′

}
·A∗

α′

+ [∇A∗
α] :

∑
|m⟩

{
QmeQgm

ωem − ωα
+

QgmQme

ωem − ωα′

}
: [∇A∗

α′ ]

 . (I.14b)

Let us take the complex conjugate2 of M (2)
fi :

(
M

(2)
fi

)∗
= −

√
ωαωα′

2ε0

Aα ·
∑
|m⟩

{
demdmg

ωem − ωα
+

dmgdem

ωem − ωα′

}
·Aα′

+ [∇Aα] :
∑
|m⟩

{
QemQmg

ωem − ωα
+

QmgQem

ωem − ωα′

}
: [∇Aα′ ]

 (I.15a)

= −
√
ωαωα′

2ε0
(Aα ·Deg ·Aα′ + [∇Aα] : Qeg : [∇Aα′ ]) , (I.15b)

where we define two tensors, the first one of rank two and the second one of rank four, as

Deg(ωα, ωα′) :=
∑
|m⟩

(
dem dmg

ωem − ωα
+

dmg dem

ωem − ωα′

)
, (I.16a)

Qeg(ωα, ωα′) :=
∑
|m⟩

(
Qem Qmg

ωem − ωα
+

Qmg Qem

ωem − ωα′

)
, (I.16b)

where the outer product is implied. The components of the tensor that come from the outer product of two tensors U
and V are (UV)i1,i2,...,in,j1,j2,...,jn := Ui1,i2,...,inVj1,j2,...,jn . These tensors describe the two successive electric dipole
and quadrupole transitions of the emitter between the states |e⟩ and |g⟩ of the emitter. Subsequently, we will refer
to them as the second-order transition electric dipole and quadrupole moments. Note that since Q is symmetric, the
fourth rank tensor Qeg is also symmetric:{

Qeg
ijkl = Qeg

jikl ∀i, j, k, l = 1, 2, 3 (I.17a)

Qeg
ijkl = Qeg

ijlk ∀i, j, k, l = 1, 2, 3. (I.17b)

Moreover, since Q can be taken traceless [8, 9], given the definition of Qeg, it satisfies the two following properties:

3∑
i=1

Qeg
iikl = 0 ∀k, l = 1, 2, 3 (I.18a)

3∑
k=1

Qeg
ijkk = 0 ∀i, j = 1, 2, 3. (I.18b)

Let us now take the square modulus of M (2)
fi :∣∣∣M (2)

fi

∣∣∣2 =
∣∣∣(M (2)

fi

)∗∣∣∣2 =
ωαωα′

4ε20
|Aα ·Deg ·Aα′ + [∇Aα] : Qeg : [∇Aα′ ]|2 , (I.19)

2 For an Hermitian operator:
(
Aab

)∗
= (⟨a|A|b⟩)∗ = ⟨b|A†|a⟩ = ⟨b|A|a⟩ = Aba where the dagger denotes the operation of taking the

transpose and the complex conjugate.
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that can be directly injected, together with the equation (I.6), in Fermi’s golden rule given in the equation (I.1):

Γ
(2)
2ED+2EQ(R) =

2π

ℏ2
ωαωα′

4ε20
|Aα ·Deg ·Aα′ + [∇Aα] : Qeg : [∇Aα′ ]|2 δ(ωeg − ωα − ωα′). (I.20)

As a final step, we take the summation over all possible modes for the two emitted quanta. However, since the energy
of one photon ranges from 0 to ℏωeg, we must take into account a factor 1/2 to avoid double counting. We finally get
the total two-photon spontaneous emission rate:

Γ
(2)
2ED+2EQ(R) =

π

4ε20ℏ2
∑
α,α′

ωαωα′ |Aα ·Deg ·Aα′ + [∇Aα] : Qeg : [∇Aα′ ]|2 δ(ωeg − ωα − ωα′), (I.21)

where the spatial dependency of the field modes and the frequency dependency of the second-order multipolar tran-
sition moments have been omitted.

D. Multipolar emission channel contributions to the total TPSE rate

As discussed in the main text, the total TPSE rate is decomposed into three distinct contributions:

Γ
(2)
tot(R) ≈ Γ

(2)
2ED+2EQ(R) = Γ

(2)
2ED(R) + Γ

(2)
2EQ(R) + γ

(2)
2ED∩2EQ(R), (I.22)

which are sketched in Figure I.2, where we have neglected the magnetic interaction, discarded the mixed transitions,
and introduced Γ

(2)
2ED∩2EQ as the term representing the interference between the 2ED and 2EQ transitions. This

interference term can be either positive or negative, potentially resulting in an increase or decrease of the overall
TPSE rate.

By developing the square modulus in equation (I.21), we find the three rate contributions:

Γ
(2)
2ED(R) =

π

4ε20ℏ2
∑
α,α′

ωαωα′ |Aα(R) ·Deg(ωα, ωα′) ·Aα′(R)|2 δ(ωeg − ωα − ωα′), (I.23a)

Γ
(2)
2EQ(R) =

π

4ε20ℏ2
∑
α,α′

ωαωα′ |[∇Aα(R)] : Qeg(ωα, ωα′) : [∇Aα′(R)]|2 δ(ωeg − ωα − ωα′), (I.23b)

Γ
(2)
2ED∩2EQ(R) = 2Re

(
π

4ε20ℏ2
∑
α,α′

ωαωα′ (Aα(R) ·Deg(ωα, ωα′) ·Aα′(R))

× (∇Aα(R) : Qeg(ωα, ωα′) : ∇Aα′(R))
∗
δ(ωeg − ωα − ωα′)

)
, (I.23c)

where the 2ED and 2EQ contributions have been derived in Ref. [1]. For the interference term, Re stands for the real
part and the factor 2 is due to cross terms, with one that is the complex conjugate of the other. Hereafter, we will

E

ℏωeg

|e⟩

|m⟩ |m⟩

|g⟩

2ED

ED

ED

ωα

ωα′

2EQ

EQ

EQ

ωα

ωα′

Interference

FIG. I.2. Energy representation of the three multipolar contributions to the TPSE process. The emitter performs a 2ED or
2EQ transition which are mediated by different intermediate states, where they can interfere. The transition energy is denoted
as ℏωeg. A similar representation can be sketched by inverting the role of the two emitted quanta.
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omit the real part for clarity purpose. Furthermore, these equations for the electric multipolar contributions to the
TPSE rate, including the interference term, are valid regardless of the emitter and its environment. In vacuum, the
2ED and 2EQ transition rates are provided in Ref. [1] while we can show that the interference term vanishes. Indeed,
in free-space, there is no interference between different multipolar sources because each type of emitter generates its
unique field distribution that remains decoupled from other multipolar sources at the same location [2].

E. Expression of the interference term as a function of the dyadic Green’s function

To derive an expression that relies on one-photon Purcell factors, the preliminary step is to express the interference
term as a function of the dyadic Green’s function and to normalize it with the 2ED and 2EQ transition rates in
vacuum, whose expressions are in Ref. [1]. We also introduce and use a modified version of the Voigt notation and
use some properties to simplify the equations. Concerning the Green’s function, its imaginary part admits a spectral
representation that can be expanded in terms of the normal modes Aα of the electromagnetic field [10]:

ImG(ω; r, r′) =
πc2

2ω

∑
α

Aα(r)A
∗
α(r

′) δ(ω − ωα), (I.24)

where c denotes the vacuum speed of light.
Let us start the developments by calculating the scalar and the double dot products:

Γ
(2)
2ED∩2EQ = 2

π

4ε20ℏ2
∑
α,α′

ωαωα′ (Aα,i Dia(ωα, ωα′)Aα′,a) (∂kAα,j Qjkbc(ωα, ωα′) ∂cAα′,b)
∗
δ(ωeg − ωα − ωα′), (I.25a)

where the Einstein summation convention is used, where the eg subscript and the spatial dependency have been
omitted, and where the components Aα,i are these of the vector Aα. Let us now rearrange the equation to reveal the
Green’s function relative to the photon emitted at frequency ωα′ = ωeg − ωα:

Γ
(2)
2ED∩2EQ = 2

π

4ε20ℏ2
∑
α

ωα(ωeg − ωα)Dia(ωα, ωeg − ωα)Q∗
jkbc(ωα, ωeg − ωα)Aα,i ∂kA

∗
α,j

×
∑
α′

Aα′,a ∂cA
∗
α′,b δ(ωeg − ωα − ωα′) (I.25b)

= 2
π

4ε20ℏ2
∑
α

ωα(ωeg − ωα)Dia(ωα, ωeg − ωα)Q∗
jkbc(ωα, ωeg − ωα)Aα,i ∂kA

∗
α,j

×

{
∂c′

∑
α′

Aα′,a(r)A
∗
α′,b(r

′) δ(ωeg − ωα − ωα′)

}
r=r′=R

(I.25c)

= 2
1

2ε20ℏ2c2
∑
α

ωα(ωeg − ωα)
2 Dia(ωα, ωeg − ωα)Q∗

jkbc(ωα, ωeg − ωα)Aα,i ∂kA
∗
α,j

× {∂c′ImGab(ωeg − ωα; r, r
′)}r=r′=R , (I.25d)

where ∂c′ means derivatives with respect to the coordinates r′. By using the property f(ωα) =
∫∞
−∞ f(ω) δ(ω−ωα) dω,

we obtain

Γ
(2)
2ED∩2EQ = 2

1

2ε20ℏ2c2

∫ ∞

−∞
ω(ωeg − ω)2 Dia(ω, ωeg − ω)Q∗

jkbc(ω, ωeg − ω)

×
∑
α

Aα,i ∂kA
∗
α,j δ(ω − ωα) {∂c′ImGab(ωeg − ω; r, r′)}r=r′=R dω (I.26a)

= 2
1

πε20ℏ2c4

∫ ωeg

0

ω2(ωeg − ω)2 Dia(ω, ωeg − ω)Q∗
jkbc(ω, ωeg − ω)

× {∂k′ImGij(ω; r, r
′)}r=r′=R {∂c′ImGab(ωeg − ω; r, r′)}r=r′=R dω, (I.26b)

where the Green’s function relative to the photon emitted at the frequency ω appears and where the integration limits
have been adapted since the frequency of a photon ranges from 0 to ωeg.
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Let us normalize the obtained spectral distribution γ
(2)
2ED∩2EQ(ω;R), i.e., the integrand of the last equation, by the

square root of the product of the vacuum emission rates of the 2ED and 2EQ transitions [1]. We get

γ
(2)
2ED∩2EQ(ω;R)√

γ
(2)
2ED,0(ω) γ

(2)
2EQ,0(ω)

= 2 D̂eg
ia (ω, ωeg − ω)

(
Q̂eg

jkbc(ω, ωeg − ω)
)∗

Tijk(ω;R)Tabc(ωeg − ω;R), (I.27)

where the caret indicates normalized tensors (i.e., for an nth rank tensor U with n ∈ N0, Û := U/ ∥U∥ with
∥U∥2 :=

∑
i1,i2,...,in

|Ui1,i2,...,in |
2.) and where we define the third rank tensor T as a function of the imaginary part

of the Green’s function:

Tijk(ω;R) :=
2
√
30πc2

ω2
{∂k′ImGij(ω; r, r

′)}r=r′=R . (I.28)

Note that the first tensor T within the equation (I.27) is related to the quanta emitted at the frequency ω, while the
second one concerns the quanta emitted at the complementary frequency ωeg − ω.

Simplification

The derived equation contains 36 terms, but, fortunately, we can leverage the properties of the tensor Qeg derived
from the symmetric and traceless properties of electric quadrupole moments written by the equations (I.17) and (I.18)
to eliminate redundant terms. Using the symmetry property provides an expression involving 32 × 62 terms instead
of 36:

γ
(2)
2ED∩2EQ(ω;R)√

γ
(2)
2ED,0(ω) γ

(2)
2EQ,0(ω)

= 2

3∑
i,a=1

6∑
µ,α=1

D̂eg
ia (ω, ωeg − ω)

(
Q̂eg

µα(ω, ωeg − ω)
)∗

Uiµ(ω;R)Uaα(ωeg − ω;R), (I.29)

with

∀i = 1, 2, 3, Uiµ :=

{
Tiµ ∀µ = 1, 2, 3

Tiµ + Tiµ̄ ∀µ = 4, 5, 6.
(I.30)

To derive this equation, we used the Voigt notation. This mathematical convention exploits the symmetry property of
a tensor, by removing its redundant components, to represent it by a lower rank tensor defined in a higher dimensional
space. In this way the second-order transition electric quadrupole moment, which is a fourth rank tensor in three
dimensions, is represented as a second rank tensor in six dimensions:

(Qjkbc)3×3×3×3 →


Q1111 Q1122 Q1133 Q1123 Q1113 Q1112

Q2211 Q2222 Q2233 Q2223 Q2213 Q2212

Q3311 Q3322 Q3333 Q3323 Q3313 Q3312

Q2311 Q2322 Q2333 Q2323 Q2313 Q2312

Q1311 Q1322 Q1333 Q1323 Q1313 Q1312

Q1211 Q1222 Q1233 Q1223 Q1213 Q1212

 → (Qµα)6×6 . (I.31)

The Table I.1 establishes the correspondence between the new indices and the ones of the represented tensor. Fur-
thermore, in the equation (I.30), the dependencies have been omitted and the bar over a pair of indices means taking
the related symmetric one (e.g., T26 = T212 = T221).

(i, j) (1, 1) (2, 2) (3, 3) (2, 3) (1, 3) (1, 2)

µ 1 2 3 4 5 6

TABLE I.1. Voigt notation: correspondence between the pair of indices (i, j) of a symmetric tensor in three dimensions and
the indices µ in six dimensions. The indices µ = 1, 2, 3 correspond to the diagonal components of a second rank tensor, while
the indices µ = 3, 4, 5 correspond to its three independent off-diagonal components. By convention the indices of this notation
are denoted with Greek letters.

Then, using the second property linked to the traceless property, we obtain a formula involving 32 × 52 terms:

γ
(2)
2ED∩2EQ(ω;R)√

γ
(2)
2ED,0(ω) γ

(2)
2EQ,0(ω)

= 2

3∑
i,a=1

6∑
µ,α=1
µ,α ̸=3

D̂eg
ia (ω, ωeg−ω)

(
Q̂eg

µα(ω, ωeg − ω)
)∗

FED∩EQ
iµ (ω;R)FED∩EQ

aα (ωeg−ω;R), (I.32)



8

with

∀i = 1, 2, 3, FED∩EQ
iµ :=

{
Uiµ − Ui3 ∀µ = 1, 2

Uiµ ∀µ = 4, 5, 6.
(I.33)

Using the equation (I.30), the tensor FED∩EQ can be rewritten as a function of the tensor T:

∀i = 1, 2, 3, FED∩EQ
iµ :=

{
Tiµ − Ti3 ∀µ = 1, 2

Tiµ + Tiµ̄ ∀µ = 4, 5, 6,
(I.34)

and, given the equation (I.28), as a function of the first derivatives of the imaginary part of the dyadic Green’s
function.

Finally, by changing indices and modifying the Voigt notation to skip the last diagonal element of second-order
tensors3, we get

γ
(2)
2ED∩2EQ(ω;R)√

γ
(2)
2ED,0(ω)γ

(2)
2EQ,0(ω)

= 2

3∑
i,j=1

5∑
µ,ν=1

Re
(
D̂eg

ij (ω, ωeg − ω)
(
Q̂eg

µν(ω, ωeg − ω)
)∗)

FED∩EQ
iµ (ω;R)FED∩EQ

jν (ωeg − ω;R).

(I.35)
Note that the first tensor FED∩EQ is related to the quanta emitted at the frequency ω, while the second one concerns
the quanta emitted at the complementary frequency ωeg − ω. In the next subsection, the relation between the tensor
FED∩EQ, i.e., the first derivatives of the imaginary part of the Green’s function, and the one-photon Purcell factors
related to the superposition of an electric dipole and quadrupole is established.

F. Expression of the interference term as a function of the one-photon Purcell factors

In the weak-coupling regime, the Purcell factor is defined as the ratio between the one-photon transition rate of
a quantum emitter in a given photonic environment and in vacuum: P := Γ(1)/Γ

(1)
0 and can be calculated by con-

sidering classical radiating point sources [10]. In the case where multiple multipolar emission channels contribute
to the transition rate, the classical source is described by the superposition of multipolar point sources, with multi-
polar moments identical to the multipolar transition moments of the emitter. In the TPSE process, we know from
previous works [1, 11] that the two-photon Purcell effect of multipolar transitions (e.g. 2ED and 2EQ transitions)
can be written as a weighted summation of the product between the one-photon Purcell factors of the two emitted
quanta, where the summation runs over different source orientations. As for the interference term given by the equa-
tion (I.35) there is also a decoupling with regard to the environment between the two emitted quanta through the
product FED∩EQ(ω)FED∩EQ(ωeg − ω), the link between the two-photon Purcell effect and the one-photon Purcell
factors remains valid when several two-photon multipolar transitions contribute simultaneously to the TPSE process.
Therefore, we can write:

γ
(2)
2ED+2EQ(ω;R)

x2(ω)
=

∑
wPED+EQ(R)P ′ED+EQ(R), (I.36)

where γ
(2)
2ED+2EQ(ω;R) is the spectral distribution of the emitted quanta of the total integrated TPSE rate given

by the equation (I.22) and where x2(ω) represents a function of the two-photon multipolar vacuum transition rates
γ
(2)
2ED,0 and γ

(2)
2EQ,0. Moreover, PED+EQ denotes the Purcell factor related to the superposition of an electric dipole

and quadrupole and the summation runs over different source orientations with w the weights. For clarity purpose,
we have adopted the following notation: when the prime symbol is not used, it denotes an evaluation at the frequency
ω, whereas when it is used, it denotes the evaluation at the complementary frequency ωeg − ω.

The total spectral TPSE rate in the previous equation is split into three contributions [Eq. (I.22)]:

γ
(2)
2ED+2EQ(ω;R) = γ

(2)
2ED + γ

(2)
2EQ + γ

(2)
2ED∩2EQ, (I.37)

3 Thus, the third row and column have been removed in equation (I.31) as well as the third column in Table I.1 (µ = 3, 4, 5 now corresponds
to (i, j) = (2, 3), (1, 3), (1, 2)).
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where the 2ED and 2EQ contributions have been written as function of one-photon Purcell factors in Ref. 1 and
where the interference term that we want to establish an expression as a function of the Purcell factors is given by
the equation (I.35).

To make the link between the Purcell factors PED+EQ and the tensor FED∩EQ involved in the interference term,
the idea is to assume specific directions for the first-order multipolar transition moments involved in the definition of
the second-order multipolar transitions moments [Eq. (I.16)]. Since general electric dipole and quadrupole moments
involve, respectively, up to three and five independent components, they can be expanded with an orthonormal basis
of 3 dipoles and 5 quadrupoles. For the dipolar moments, these are the three basis vectors, while for the quadrupolar
ones, the basis is built from two different types of plane quadrupoles [1]. Type I (Q̂yz, Q̂xz, and Q̂xy) involve solely
off-diagonal components while Type II (Q̂xx and Q̂yy) involves only diagonal components and differs from type I by
an in-plane rotation of 45◦ [1]. In our adapted Voigt notation, these quadrupoles are represented by a five dimensional
vector in which only the µ-th component is non-zero and equals to 1/

√
2 4.

As mentioned in the main text and in the next section, the interference term expressed as a function of the first
derivatives of the imaginary part of the Green’s function is related to the power emitted by an electric point dipole
and an electric point quadrupole at the same position. Thus, there are 3×5 possible combinations of the basis vectors
of these two sources. Let us take the two first-order electric dipole transition moments aligned along one basis vector,
i.e., d̂

em
= d̂

mg
= êi with i = 1, 2, 3, and the two first-order electric quadrupole transition moments aligned along

one basis vector, i.e., Q̂
em

= Q̂
mg

= êµ/
√
2 with µ = 1, . . . , 5. In this case, using equations (I.16), the normalized

second-order multipolar transition moments are given by

D̂
eg

= êiêi, (I.38a)

Q̂
eg

=
1

2
êµêµ. (I.38b)

Therefore, using the equations in Ref. 1 for the 2ED and 2EQ terms, the equation (I.35) for the interference term,
and the equations (I.38) for the multipolar moments, the total transition rate given by the equation (I.37) is rewritten
as

γ
(2)
2ED+2EQ = γ

(2)
2ED,0 P

ED
i P ′ED

i + γ
(2)
2EQ,0 P

EQ
µ P ′EQ

µ + 2

√
γ
(2)
2ED,0 γ

(2)
2EQ,0

1

2
FED∩EQ
iµ F ′ED∩EQ

iµ , (I.39)

where the dependencies have been omitted. In this equation, PED
i and PEQ

µ correspond, respectively, to the Purcell
factors related to an electric dipole aligned along êi and to an electric quadrupole aligned along êµ [1].

As the second-order multipolar moments given by the equations (I.38) involve only one component, there is only
one possible direction for the dipole (êi) and for the quadrupole (êµ) and thereby the summation over the source
orientations in the equation (I.36) is reduced to a single term:

γ
(2)
2ED+2EQ = x2PED+EQ

iµ P ′ED+EQ
iµ , (I.40)

where the dependencies have been omitted and where PED+EQ
iµ is the Purcell factor related to a superposition of an

electric dipole aligned along êi and of an electric quadrupole aligned along êµ.
Combining the two last equations establishes the link between Purcell factors and the tensors FED∩EQ:

x2PED+EQ
iµ P ′ED+EQ

iµ = γ
(2)
2ED,0 P

ED
i P ′ED

i + γ
(2)
2EQ,0 P

EQ
µ P ′EQ

µ +

√
γ
(2)
2ED,0 γ

(2)
2EQ,0 F

ED∩EQ
iµ F ′ED∩EQ

iµ , (I.41)

where the Purcell factors can be calculated via the power emitted by classical point sources [10]:

PED
i =

WED
i

WED
0

, (I.42a)

PEQ
µ =

WEQ
µ

WEQ
0

, (I.42b)

PED+EQ
iµ =

WED+EQ
iµ

WED
0 +WEQ

0

=
WED

i +WEQ
µ +WED∩EQ

iµ

WED
0 +WEQ

0

. (I.42c)

4 The factor 1/
√
2 for the quadrupoles is the normalization factor for quadrupoles that are described by two equal components in absolute

value.
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In these equations, the subscript 0 indicates quantities that refer to vacuum whereas WED
i , WEQ

µ , and WED+EQ
iµ

denote the powers emitted by a classical dipole aligned along êi, by a classical quadrupole aligned along êµ, and by
the superposition of both sources, respectively. Furthermore, WED+EQ

iµ is decomposed into three contributions where
WED∩EQ

iµ represents the interference term between the two classical sources. As a reminder, there is no interference
in vacuum.

Replacing the Purcell factor expressions into the equation (I.41) gives a left-hand side composed of nine terms, but
a right-hand side consisting of only three terms. This is because in our developments based on Fermi’s golden rule
we discarded mixed transitions, which are consequently not included in the right-hand side. In the left-hand side,
the terms involving the products WED

i W ′ED
i , WEQ

µ W ′EQ
µ , and, WED∩EQ

iµ W ′ED∩EQ
iµ correspond, respectively, to the

2ED, 2EQ, and interference contributions in the right-hand side. The 6 other terms in the left-hand side are related
to mixed transitions, as for example the one that involves the product WED

i W ′EQ
µ describing an ED–EQ transition.

Furthermore, the interference term in the left-hand side describes simultaneously the interference between the 2ED
and 2EQ transitions but also between the mixed transitions ED–EQ and EQ–ED. Indeed, as depicted in Figure I.3,
both situations are identical from an interference point of view since it is always a question of an interaction between
an ED and EQ emission channels, leading to the same tensor FED∩EQ and to the same interference term. It is
therefore necessary to take only the half of the interference term in the left-hand side in order to equal it with the
one on the right-hand side. Hence, by removing the terms related to mixed transitions in the left-hand side and by
matching the remaining terms on either side of the equation, we obtain a system of three equations:

x2 WED
i

WED
0 +WEQ

0

W ′ED
i

W ′ED
0 +W ′EQ

0

= γ
(2)
2ED,0

WED
i

WED
0

W ′ED
i

W ′ED
0

(I.43a)

x2
WEQ

µ

WED
0 +WEQ

0

W ′EQ
µ

W ′ED
0 +W ′EQ

0

= γ
(2)
2EQ,0

WEQ
µ

WEQ
0

W ′EQ
µ

W ′EQ
0

(I.43b)

1

2
x2

WED∩EQ
iµ

WED
0 +WEQ

0

W ′ED∩EQ
iµ

W ′ED
0 +W ′EQ

0

=

√
γ
(2)
2EQ,0 γ

(2)
2EQ,0 F

ED∩EQ
iµ F ′ED∩EQ

iµ . (I.43c)

E

ℏωeg

|e⟩

|m⟩ |m⟩

|g⟩

2ED

ED

ED

2EQ

EQ

EQ

Fiµ

F ′
iµ

|e⟩

|m⟩ |m⟩

|g⟩

ED – EQ

ED

EQ

EQ – ED

EQ

ED

Fiµ

F ′
iµ

FIG. I.3. Ilustration of the interference between the 2ED and 2EQ transitions (left) and between the mixed transitions ED–EQ
and EQ–ED (right). Both situations are identical from an interference point of view since it is always a question of an interaction
between an ED and EQ emission channels, leading to the same tensor FED∩EQ and to the same interference term.

The two first equations form a system of two equations with two unknowns: x a function of the vacuum TPSE
rates and the ratio between the powers emitted in vacuum by the classical ED and EQ sources. Indeed, the power
emitted by the classical multipolar sources representing the multipolar transition moments of the emitter need to be
set according to the two-photon multipolar transition rates in vacuum. Solving this system by using the symmetry
propriety of TPSE rates with respect to ωeg/2 gives:

x = x′ =

√
γ
(2)
2ED,0 +

√
γ
(2)
2EQ,0, (I.44a)

WEQ
0

WED
0

=
W ′EQ

0

W ′ED
0

=

√√√√γ
(2)
2EQ,0

γ
(2)
2ED,0

. (I.44b)
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Now, by using the third equation of the system together with the last two, we obtain an expression for the FED∩EQ

tensor:

FED∩EQ
iµ (ω;R) =

WED∩EQ
iµ (ω;R)√

2WED
0 (ω)WEQ

0 (ω)
, (I.45)

which can be written, using the equations (I.42) and (I.44), as a function of the Purcell factors:(
γ
(2)
2ED,0 γ

(2)
2EQ,0

)1/4

FED∩EQ
iµ =

1√
2

[(√
γ
(2)
2ED,0 +

√
γ
(2)
2EQ,0

)
PED+EQ
iµ −

√
γ
(2)
2ED,0 P

ED
i −

√
γ
(2)
2EQ,0 P

EQ
µ

]
, (I.46)

where the dependencies have been omitted, and where the Purcell factors can be calculated via the equations (I.42).
Note that in vacuum, all Purcell factors tend towards one and the tensor FED∩EQ tends, as expected, towards 0 and
leads to an interference term [Eq. (I.35)] equals to zero.
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II. POWER EMITTED BY CLASSICAL POINT SOURCES

In this section, we briefly look at the power emitted by classical point sources that we express as a function of the
dyadic Green’s function. Let us consider a linear, isotropic, non-magnetic and homogeneous medium with a dielectric
constant equal to 1 in which there is a source contained in a finite volume V . The source is described by a current
density j and we assume a time harmonic dependence e−iωt, with ω the source oscillation frequency. Thereby, the
electric field at a position r produced by the source can be calculated trough an integral of the dyadic Green’s function
G [1]:

E(r) = iµ0 ω

∫
V

G(ω; r, r′) j(r′) dV ′. (II.1)

Since the source has a time harmonic dependence, this is also the case for the electromagnetic field. Moreover, the
power emitted by the source is given by Poynting’s theorem [1]:

W = −1

2

∫
V

Re {j∗(r) ·E(r)} dV, (II.2)

where Re stands for the real part. Then, the use of the two introduced equations allows to write the power emitted
by a source as a function of the Green’s function and of the source current density:

W =
µ0 ω

2

∫
V

∫
V

Im {j∗(r) ·G(ω; r, r′) · j(r′)}dV ′ dV, (II.3)

where Im denotes taking the imaginary part and the obtained expression involves twice the source current density.
Now, let us consider the case where the source is an electric point dipole and an electric point quadrupole at the

same location R. Thereby, the source current density is given by [1–3]:

jED+EQ(r) = −iω (d−Q∇) δ(r−R), (II.4)

where ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )

T is a column vector with T denoting the transpose and with d and Q being the electric dipole
and quadrupole moments of the source1:

d =

∫
V

ρ(r) r dV, (II.5a)

Q =
1

2

∫
V

ρ(r)

(
rr− r21

3

)
dV, (II.5b)

with ρ the volume charge density2 and 1 the identity matrix. Injecting the source current density in the equation (II.3)
leads to the three following contributions to the emitted power:

WED+EQ = WED +WEQ +WED∩EQ, (II.6)

where

WED =
µ0 ω

3

2
∥d∥2

{
d̂ · ImG(ω;R,R) · d̂

}
, (II.7a)

WEQ =
µ0 ω

3

2
∥Q∥2

{
Q̂∇ · ImG(ω; r, r′) · Q̂∇′

}
r=r′=R

, (II.7b)

WED∩EQ = 2
µ0 ω

3

2
∥d∥ ∥Q∥

{
d̂ · ImG(ω;R, r′) · Q̂∇′

}
r′=R

, (II.7c)

where we defined the squared norm of a rank-n tensor U with n ≥ 1 as ∥U∥2 :=
∑

i1,i2,...,in
|Ui1,i2,...,in |

2, where ∇′

means derivatives with respect to the coordinates r′, and where the caret denotes normalized vectors and tensors.
All of these equations involve the imaginary part of the Green’s function evaluated the emitter’s position, which

1 The quadrupole moment is sometimes defined with a factor 3 instead of the factor 1/2. However, it is important to define the quadrupole
moment as we did in order to have a correspondence with the electric quadrupole operator Q = −e rr/2 in quantum mechanics. In
addition, Q can be taken traceless in source-free regions (

∫
V ρ(r)dV = 0) since ∇ ·E = 0 [4–6].

2 Note that
∫
V ρ(r) dV = 0.
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is a symmetric tensor. For the electric quadrupole, the equation involves double derivatives of the imaginary part
of the Green’s function while the interference term WED∩EQ involves single derivatives. These equations involve,
respectively, twice the electric dipole moment d, twice the electric quadrupole moment Q, and once the electric dipole
and quadrupole moments for the interference term. Moreover, the Green’s function is the result of the field produced
by the source alone plus the field scattered by the environment, which explains how the power is modified by the
environment of the emitter.

In vacuum the equations reduce to:

WED,0 =
µ0 ω

4

12πc
∥d∥2 , (II.8a)

WEQ,0 =
µ0 ω

6

40πc3
∥Q∥2 , (II.8b)

where the interference is zero. In addition, the vacuum normalized powers are written as follows:

WED

WED,0
=

6πc

ω

{
d̂ · ImG(ω;R,R) · d̂

}
, (II.9a)

WEQ

WEQ,0
=

20πc3

ω3

{
Q̂∇ · ImG(ω; r, r′) · Q̂∇′

}
r=r′=R

, (II.9b)

WED∩EQ√
WED,0 WEQ,0

= 2
2
√
30πc2

ω2

{
d̂ · ImG(ω; r, r′) · Q̂∇′

}
r=r′=R

. (II.9c)
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III. CALCULATION OF THE TWO-ELECTRIC DIPOLE AND THE TWO-ELECTRIC QUADRUPOLE
TRANSITION RATES IN VACUUM BETWEEN TWO s STATES OF THE HYDROGEN ATOM

In this section, we calculate the two-electric dipole (2ED) and the two-electric quadrupole (2EQ) vacuum transition
rates between the 5s and 3s states of the hydrogen atom. As in our framework we have obtained expressions for the
multipolar contributions which are normalized by the rates in vacuum, it is necessary to know them in order to be
able to sum up all the contributions to retrieve the overall TPSE rate. Moreover, they are required to define the power
emitted by the classical ED and EQ sources used to calculate the Purcell factors associated with the superposition
of these two sources when calculating the tensor FED∩EQ that describes the interference between the ED and EQ
single-photon transitions and which is involved in calculating the interference between the 2ED and 2EQ channels.

Historically, the first estimate of a two-photon spontaneous emission rate was carried out in 1940 by Breit and
Teller for the 2s state of hydrogen, for which this is the main process responsible for its mean lifetime [1]. One decade
later, Spitzer and Greenstein realized a refinement and found a value of 8.23 s−1 for the integrated two-electric dipole
transition rate, i.e., the main multipolar contribution to this process [2]. In 1981, Goldman and Drake made the first
calculations, relativistic, that include the first multipolar contributions to the TPSE process [3]. They found that the
integrated 2ED and 2EQ transition rates are 8.229 s−1 and 4.907 × 10−12 s−1, respectively. More recently in 2007,
Chluba and Sunyaev studied the two-photon process for the ns → 1s and nd → 1s 2ED transitions in hydrogen and
up to large n, where they provide analytical fittings of the spectra [4].

In conclusion, the only data available in the literature concerning vacuum 2ED and 2EQ transition rates for hydrogen
are, on the one hand, spectra involving the 1s state as the final state for the 2ED transition [4] and, on the other
hand, the integrated rate between the 2s and 1s states for the 2EQ transition [3]. Nevertheless, Matsumoto derived
in 1991 analytical expressions for the multipole matrix elements for the hydrogen atom [5]. Thus, we can use the
method presented in Refs. [4, 6] for their calculation of 2ED transition rates as well as the expressions of the multipole
matrix elements in Ref. [5] to calculate the 2ED and 2EQ transition rates between two s states of the hydrogen atom.

The document starts in Section III A with a reminder concerning the expressions of the 2ED and 2EQ transition rates
in vacuum and about the multipolar second-order moments relative to a transition between two spherically symmetric
states. Then, we derive in Section III B the 2ED and 2EQ decay profiles and we discuss the two contributions to
the summation over the virtual intermediate states. In Section III C, we give the expressions of the multipole matrix
elements, which are radial integrals over the radial eigenfunctions of the hydrogen atom. Finally, our method and
results are presented in Section IIID.

A. Reminder

In Ref. [7], we showed that for each multipolar operator MO ∈ {ED, EQ} the vacuum TPSE rate is given by

Γ
(2)
2MO,0 =

∫ ωeg

0

γ
(2)
2MO,0(ω) dω, (III.1)

where the multipolar contributions γ
(2)
2MO,0(ω) to the spectral distribution of the emitted quanta are given by

γ
(2)
2ED,0(ω) =

ω3(ωeg − ω)3

36π3ε20ℏ2c6
∥Deg(ω, ωeg − ω)∥2 , (III.2a)

γ
(2)
2EQ,0(ω) =

ω5(ωeg − ω)5

400π3ε20ℏ2c10
∥Qeg(ω, ωeg − ω)∥2 , (III.2b)

where ω and ωeg − ω are the frequencies of the two emitted quanta of complementary energy. In these equations, ε0
is the vacuum electric permittivity, ℏωeg represents the transition energy with ℏ the reduced Planck constant, and c
denotes the speed of light in vacuum. Moreover, the squared norm of an nth rank tensor U with n ∈ N0 is defined as
∥U∥2 :=

∑
i1,i2,...,in

|Ui1,i2,...,in |2.
These expressions involve the squared norm of the second-order multipolar transition moments that are defined as:

Deg(ω, ωeg − ω) :=
∑

|m⟩

(
demdmg

ωem − ω
+

dmgdem

ωem − (ωeg − ω)

)
, (III.3a)

Qeg(ω, ωeg − ω) :=
∑

|m⟩

(
Qem Qmg

ωem − ω
+

Qmg Qem

ωem − (ωeg − ω)

)
, (III.3b)
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where ℏωab := Ea−Eb with Ea denoting the energy of the atom in the state |a⟩ and where the outer product is implied.
The components of the tensor that derive from the outer product of two tensors U and V are (UV)i1,i2,...,in,j1,j2,...,jn :=
Ui1,i2,...,inVj1,j2,...,jn . In these definitions, the summation runs over all possible emitter’s virtual intermediate states
|m⟩. Furthermore, dab := ⟨a|d|b⟩ and Qab := ⟨a|Q|b⟩, with d and Q the electric dipole and quadrupole operators,
stand for the electric dipole and electric quadrupole transition moments, respectively, which describe the emitter’s
transition from the state |b⟩ to the state |a⟩ (a, b = e, m, g). Thus, the tensors Deg and Qeg describe the two
successive electric dipole and quadrupole transitions, respectively, between the excited |e⟩ state and the ground state
|g⟩ of the emitter.

s → s transition

In the case of a transition between two spherically symmetric states, the second-order electric dipole transition
moment is given by [8]:

Deg(ω, ωeg − ω) =
∑

n

demdmg

(
1

ωem − ω
+

1

ωem − (ωeg − ω)

)
13, (III.4)

where there is a summation over the principal quantum number n of the intermediate states |m⟩, where 13 is the
identity matrix in three dimensions and where dem and dmg are the electric dipole radial matrix elements:

dem := −e a0√
3
⟨Rne,l−1|r|Rn,l⟩ , (III.5a)

dmg := −e a0√
3
⟨Rn,l|r|Rng,l−1⟩ . (III.5b)

In the previous equations, e is the elementary charge, a0 represents the Bohr radius, r is the position operator, and
Rn,l(r) denotes the radial component of the wavefunction of the hydrogen atom. Moreover, l denotes the azimuthal
quantum number of the intermediate state whereas ne and ng are the principal quantum numbers of the excited
and ground states of the emitter, respectively. For consistency of notation, we retain the ground state label for the
final state, even though it is not necessarily the ground state. The radial integrals present in these expressions are
dimensionless and will be discussed in Section III C.

Concerning the 2EQ transition, for a s → s transition, the second-order electric quadrupole transition moment is
given by [7]:

Qeg(ω, ωeg − ω) = 4
√
5
∑

n

qemqmg

(
1

ωem − ω
+

1

ωem − (ωeg − ω)

)
Q̂

eg
, (III.6)

where the elements of the normalized tensor are given by

Q̂eg
ijkl :=

Qeg
ijkl(ω, ωeg − ω)

∥Qeg(ω, ωeg − ω)∥ =
1√
20

(
δikδjl + δilδjk − 2

3
δijδkl

)
, (III.7)

and where qem and qmg are the electric quadrupole radial matrix elements:

qem := − e a20
2
√
30

⟨Rne,l−2|r2|Rn,l⟩ , (III.8a)

qmg := − e a20
2
√
30

⟨Rn,l|r2|Rng,l−2⟩ . (III.8b)

B. Vacuum decay profiles for a transition between two isotropic states

To calculate TPSE rates in vacuum, let us rewrite the equations by introducing the dimensionless frequency y :=
ω/ωeg comprised between 0 and 1. By doing so, the equation (III.1) of the integrated transition rate is rewritten as
follows [4]:

Γ
(2)
2MO,0 =

∫ ωeg

0

γ
(2)
2MO,0(ω) dω =

1

2

∫ 1

0

ϕ
(2)
2MO,0(y) dy =

∫ 1/2

0

ϕ
(2)
2MO,0(y)dy, (III.9)



16

with

ϕ
(2)
2MO,0(y) = 2ωeg γ

(2)
2MO,0(ω), (III.10)

where ϕ
(2)
2MO,0(y) dy denotes the number of photons emitted per second in the frequency interval between y and

y + dy. The latter spectrum encompasses the photons emitted simultaneously during this second-order process at
complementary frequencies, thus necessitating integration over only half of the spectrum1. Note that the probability
to emit a photon at the frequency ω is equal to the probability to emit a photon at the complementary energy ωeg−ω,
leading to symmetric profiles with respect to ωeg/2.

Now, let us obtain the expression of the decay profiles for the 2ED and 2EQ transitions in vacuum. Then, we
discuss the different contributions to the sum over the virtual intermediate states.

1. Two-electric dipole decay profile

Let us start by rewriting the equations of the spectral transition rate and of the second-order transition moment,
given by the equations (III.2a) and (III.4), by introducing the dimensionless frequency y := ω/ωeg and by using the
new definition of the spectrum given by the equation (III.10):

ϕ
(2)
2ED,0(y) =

ω7
eg

18π3ε20ℏ2c6
y3(1− y)3 ∥Deg(y, 1− y)∥2 , (III.11a)

Deg(y, 1− y) =
1

ωeg

∑

n

demdmgfn(y)13, (III.11b)

where the function fn(y) has been defined as

fn(y) :=

(
1

yem − y
+

1

yem − (1− y)

)
, (III.12)

with

yem :=
ωem

ωeg
:=

Ee − Em

Ee − Eg
=

n2
g(n

2
e − n2)

n2(n2
e − n2

g)
. (III.13)

Thus, the function fn(y) depends only on the principal quantum number n of the intermediate state (these of the
initial and final ones are fixed). In the last equation, we used the expression of the eigenvalues, i.e., En = −Ei/n

2

with Ei ≈ 13.6 eV the ionization energy of the hydrogen atom.
Using the expressions of the electric dipole radial matrix elements given by the equations (III.5), the squared norm

of the second-order transition moment is rewritten as

∥Deg(y, 1− y)∥2 =
e4a40
3ω2

eg

∣∣∣∣∣
∑

n

⟨Rne,l−1|r|Rn,l⟩ ⟨Rn,l|r|Rng,l−1⟩ fn(y)
∣∣∣∣∣

2

︸ ︷︷ ︸
|Meg

2ED(y)|2

. (III.14)

Finally, by injecting the last equation in the expression of the 2ED vacuum transition rate [Eq. (III.11a)], we get the
expression obtained in Ref. [4] for the 2ED decay profile:

ϕ
(2)
2ED,0(y) = Geg

2ED y3(1− y)3 |Meg
2ED(y)|

2
, Geg

2ED :=

(
2

3

)3 ω5
ega

4
0α

2

πc4
, (III.15)

where α = e2/4πε0ℏc is the fine-structure constant. Note that this expression is only valid for a s → s transition.
For a 2s → 1s transition, ωeg = 3Ei/4ℏ and G2s 1s

2ED ≈ 4.37 s−1, while for a 5s → 3s transition, ωeg = (4/15)2Ei/ℏ and
G5s 3s

2ED ≈ 3.35× 10−5 s−1.

1 The definition of γ(2)
2MO,0(ω) doesn’t count the quanta emitted simultaneously at complementary frequencies, which explains the factor

2 difference with the definition of ϕ(2)
2MO,0(y).
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2. Two-electric quadrupole decay profile

Now, let us do the same developments for the spectral transition rate and for the second-order transition moment
of the 2EQ transition, respectively given by the equations (III.2a) and (III.4):

ϕ
(2)
2EQ,0(y) =

ω11
eg

200π3ε20ℏ2c10
y5(1− y)5 ∥Qeg(y, 1− y)∥2 , (III.16a)

Qeg(y, 1− y) =
4
√
5

ωeg

∑

n

qemqmgfn(y) Q̂
eg
. (III.16b)

Using the expressions of the electric quadrupole radial matrix elements given by the equations (III.8), the squared
norm of the second-order transition moment is rewritten as

∥Qeg(y, 1− y)∥2 =
e4a80

180ω2
eg

∣∣∣∣∣
∑

n

⟨Rne,l−2|r2|Rn,l⟩ ⟨Rn,l|r2|Rng,l−2⟩ fn(y)
∣∣∣∣∣

2

︸ ︷︷ ︸
|Meg

2EQ(y)|2

. (III.17)

Finally, by injecting the last equation in the expression of the 2EQ vacuum transition rate given by the equa-
tion (III.16a), we get the 2EQ decay profile:

ϕ
(2)
2EQ,0(y) = Geg

2EQ y5(1− y)5
∣∣∣Meg

2EQ(y)
∣∣∣
2

, Geg
2EQ :=

ω9
ega

8
0α

2

2250πc8
. (III.18)

Note that this expression is only valid for a s → s transition. For a 2s → 1s transition, ωeg = 3Ei/4ℏ and G2s 1s
2EQ ≈

3.67× 10−13 s−1, while for a 5s → 3s transition, ωeg = (4/15)2Ei/ℏ and G5s 3s
2EQ ≈ 2.27× 10−22 s−1.

3. Summation over intermediate states

To calculate the decay profiles ϕ
(2)
2ED,0(y) and ϕ

(2)
2ED,0(y), we need to calculate the quantities Meg

2ED(y) and
Meg

2EQ(y) [Eqs. (III.14) and (III.17)] that involve a summation over the principal quantum number of the virtual
intermediate states. This one starts from n = ne and extends to infinity. Indeed, the summation for ng < n < ne

denotes a summation over real states and thus describes a cascade of two single-photon emissions and not a TPSE
process [4]. Moreover, there are two contributions to the summation over n ≥ ne:

∑

n

=

∞∑

n=ne

+

∫ ∞

0

dx. (III.19)

The first one is a summation over the discrete set of bound states (En = −Ei/n
2 < 0, n ∈ N0) while the second one

is an integral over the continuum of free states (Ex = x2Ei ≥ 0, x ∈ R+) [4].
Now all that is left to do is calculate, in the next section, the multipole matrix elements involved in the calculation

of Meg
2ED(y) and Meg

2EQ(y) [Eqs. (III.14) and (III.17)].

C. Calculation of multipole matrix elements

For the radial component of the hydrogen atom’s wavefunction, the eigenfunctions can be written, in atomic unit
of length, as follows [5, 6]:

Rn,l(r) = Nn,l e
−r/n rl 1F1

(
−nr; 2l + 2; 2

r

n

)
, (III.20)

where n, l, and nr := n − l − 1 are respectively the principal, azimuthal, and radial quantum numbers. Moreover,
Nn,l is a normalization constant and 1F1(a; b; z) denotes the confluent hypergeometric function defined as [9, 10]:

1F1(a, b; z) :=

∞∑

n=0

(a)n
(b)n

zn

n!
=

Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ezt ta−1(1− t)b−a−1 dt, (III.21)
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where ( · )m is the Pochhammer symbol defined as

(x)m :=
Γ(x+m)

Γ(x)
= x(x+ 1)(x+ 2) . . . (z +m− 1), (III.22)

with Γ(x) the gamma function.
For the discrete set of bound states (E < 0), the eigenvalues En and the normalization constant are given by

En = −Ei

n2
with n ∈ N0, (III.23a)

Nn,l =
2l+1

(2l + 1)!

√
(n+ l)!

(n− l − 1)!
n−l−2. (III.23b)

For the continuum of unbound states (E ≥ 0), the principal quantum number n = −i/x is imaginary. In this case,
the eigenvalues and the normalization constant, now denoted Cx,l, are given by2

E = −Ei

n2
= x2Ei with x ∈ R+, (III.24a)

Cx,l =
2l+1

(2l + 1)!

xl+ 1
2√

1− e−
2π
x

l∏

s=1

(
s2 + x−2

)
. (III.24b)

Note that even though n may be complex, the radial eigenfunctions remain real.
The expressions obtained for the 2ED and 2EQ vacuum TPSE rates involve, in Meg

2ED and Meg
2EQ [Eqs. (III.14)

and (III.17)], the multipole matrix elements of the radial eigenfunctions that describe the transition from the state
characterized by the quantum numbers (m, j) to the state characterized by the quantum numbers (n, l). These are
calculated through a radial integral [5, 6]:

⟨Rn,l|ra|Rm,j⟩ :=
1

a0

∫ ∞

0

Rn,l(r) r
a+2 Rm,j(r)dr, (III.25)

where r is the position operator and where the integral is dimensionless due to the division by the atomic unit of
length, i.e., the Bohr radius a0. Moreover, a is equal to 1 for an electric dipole transition and to 2 for an electric
quadrupole transition. In the previous equation, (n, l) are the quantum numbers associated to the intermediate state,
which can be a bound or a free state, while (m, j) are the ones of the initial or final states, which are always bound
states (m ∈ N0). We therefore refer to bound-bound and bound-free radial integrals. In addition, as the radial
wavefunctions of the hydrogen atom are real and as the position operator r is Hermitian, the following relation is
satisfied:

⟨Rn,l|ra|Rm,j⟩ = ⟨Rm,j |ra|Rn,l⟩∗ = ⟨Rm,j |ra|Rn,l⟩ . (III.26)

For an ED transition (a = 1 and j = l − 1), one can show that [5, 6]:

∀n ̸= m, ⟨Rn,l|r|Rm,l−1⟩ = Nn,l Nm,l−1 (−1)m−l (2l + 1)!

2
n(nm)2l+2 (n−m)n+m−2l−2

(n+m)n+m

×
[
F (−nr,−mr; c; z)−

(
n−m

n+m

)2

F (−nr − 2,−mr; c; z)

]
, (III.27a)

⟨Rn,l|r|Rn,l−1⟩ =
3

2
n
√

n2 − l2, (III.27b)

where c = 2l, z = −4nm/(n−m)2, and where F is the hypergeometric function 2F1(a, b; c; z) defined as [9, 10]:

2F1(a, b; c; z) :=

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt. (III.28)

2 The normalization constant depends on the scale chosen to integrate over the continuum [6]. A normalization in the energy-scale lead
to a normalization constant CE,l = Cx,l/

√
x with Cx,l the normalization constant in the x-scale. As we wrote the integral over the

continuum in the equation (III.19) as a function of the variable x, we need to take the normalization constant Cx,l.
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For an EQ transition (a = 2 and j = l, l − 2), one can show that3 [5]:

∀n ̸= m, ⟨Rn,l|r2|Rm,l−2⟩ = Nn,l Nm,l−2 (−1)m−l+1 (2l + 1)!

4
n3(nm)2l

(n−m)n+m−2l−1

(n+m)n+m−1

×
[
F (−nr,−mr; c− 2; z)− 2

(
n−m

n+m

)
F (−nr − 1,−mr; c− 2; z)

+2

(
n−m

n+m

)3

F (−nr − 3,−mr; c− 2; z)−
(
n−m

n+m

)4

F (−nr − 4,−mr; c− 2; z)

]
, (III.29a)

∀n ̸= m, ⟨Rn,l|r2|Rm,l⟩ = 8Nn,l Nm,l (−1)m−l (2l + 1)! (nm)2l+6 (n−m)n+m−2l−4

(n+m)n+m+2
F (−nr,−mr; c− 2; z).

(III.29b)

Note that the EQ transition is forbidden between two s states (l = j = 0) [11] and that the case where n = m has
not been derived for an EQ transition. Consequently, we use the definition of the radial eigenfunctions (III.20) and of
the multipole radial matrix elements (III.25) to calculate this case. Also the equations (III.27) and (III.29) are valid
for the bound-free radial integrals, by replacing Nn,l by Cx,l with x = −i/n ∈ R+.

D. Method and results

To calculate the 2ED and 2EQ vacuum decay profiles ϕ
(2)
2ED,0(y) and ϕ

(2)
2EQ,0(y) given by the equations (III.15)

and (III.18), one needs to calculate the two contributions arising from the bound-bound and from the bound-free
radial integrals to the summation over the virtual intermediate states given by the equation (III.19) when calculating
Meg

2ED(y) and Meg
2EQ(y) given by the equations (III.14) and (III.17). Moreover, the calculation of Meg

2ED(y) and Meg
2EQ(y)

involves the function fn(y) defined at the equations (III.12) and (III.13) as well as the bound-bound and bound-free
radial integrals given by the equations (III.27) for an ED transition and given by the equations (III.29) for an EQ
transition. Then, the integrated rates can be calculated via the integration over half of the spectrum of the decay
profiles [Eq. (III.9)].

To compute the profiles, we use the mpmath Python library [12] for the confluent hypergeometric function 1F1(a; b; z)
and for the hypergeometric function 2F1(a, b; c; z), and we use the integrate.quad function of the SciPy Python
library [13] to integrate. In addition, the discrete summation over the principal quantum number of the virtual
intermediate states [Eq. (III.19)] is truncated at the first 200 terms [4]. The computed data for the 2ED and 2EQ
transitions between the states 2s → 1s and between the states 5s → 3s are given in Table III.1 and the corresponding
profiles are sketched in Figure III.1.

The relative difference between our computed values of ϕ(2)
2ED,0(y = 0.5) for the transitions nes → 1s with ne ranging

from 1 to 10 and those in Ref. [4] is less than 0.02%. Also, the relative difference is less than 0.01% between our
computed values of Γ(2)

2ED,0 and Γ
(2)
2EQ,0 for the 2s → 1s transition and those in Ref. [3]. Furthermore, as there is only

one 2EQ transition rate datum in vacuum, we checked that we can find the EQ transition rate value4 for ned → ngs
single-photon transitions with a relative error less than 0.1% [14]. Note that our Python script and the data, for ng

ranging from 1 to 9 and for ne ranging from ng + 1 to 10, are available upon request.

Transition nes → ngs ∆Eeg [eV] ωeg [rad/s] λeg [µm] Γ
(2)
2MO,0

[
s−1

]
ϕ
(2)
2MO,0(y = 0.5)

[
s−1

]
2ED 2s → 1s 10.2 1.55× 1016 0.122 8.23 21.3

2ED 5s → 3s 0.968 1.47× 1015 1.28 1.18× 10−2 3.24× 10−2

2EQ 2s → 1s 10.2 1.55× 1016 0.122 4.91× 10−12 2.40× 10−11

2EQ 5s → 3s 0.968 1.47× 1015 1.28 1.43× 10−15 5.96× 10−15

TABLE III.1. Computed data for 2ED and 2EQ transitions between the states 2s → 1s and 5s → 3s, with ∆Eeg = ℏωeg =
hc/λeg.

3 There are several typographical errors in the formula provided in the reference [5].
4 For an ned → ngs transition, we can show that Γ

(1)
EQ,0 =

ω5
egαa0

75c4
⟨Rng,0|r2|Rne,2⟩.
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FIG. III.1. Profiles for 2ED (top) and 2EQ (bottom) transitions between the states 2s → 1s (left) and 5s → 3s (right).
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IV. GRAPHENE OPTICAL RESPONSE

The optical response of graphene is characterized by its two-dimensional surface conductivity that is given, as in
Ref. [1] in their study of strong multipolar transition enhancement with graphene nanoislands, by two contributions
coming from the intraband and interband electronic transitions [2, 3]:

σ = σintra + σinter, (IV.1a)

σintra =
2ie2kBT

πℏ2(ω + i/τ)
ln
[
2 cosh

(
EF

2kBT

)]
, (IV.1b)

σinter =
e2

4ℏ

[
1

2
+

1

π
arctan

(
ℏω − 2EF

2kBT

)
− i

2π
ln
(

(ℏω + 2EF )
2

(ℏω − 2EF )2 + (2kBT )2

)]
, (IV.1c)

where e represents the electron charge, kB is the Boltzmann constant, T = 300 K denotes the temperature, and
EF stands for the Fermi energy, i.e., the doping level of graphene. Moreover, the scattering lifetime of electrons in
graphene is given by τ = µEF /ev

2
F , with µ ≈ 104 cm2 V−1s−1 the impurity-limited DC conductivity and vF = 106

m/s the graphene Fermi velocity [4, 5]. Fig. IV.1 shows the graphene permittivity as a function of its Fermi energy.
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FIG. IV.1. Real and imaginary part of the graphene permittivity as a function of its Fermi energy for an effective thickness
of 0.335 nm [6] and a frequency ℏω = ℏωeg/2 = 0.48 eV. Below EF = 0.29 eV, graphene assumes a dielectric behavior. The
imaginary part of the dielectric constant increases when the Fermi energy decreases and approaches half of the photon energy
(ℏω = 2EF ) due to interband transitions [7].
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